Simple Moving Average - SMA BREAKING DOWN Simple Moving Average - SMA Rata-rata bergerak sederhana dapat disesuaikan sehingga bisa dihitung untuk periode waktu yang berbeda, cukup dengan menambahkan harga penutupan keamanan untuk sejumlah periode waktu dan kemudian membagi Jumlah ini dengan jumlah periode waktu, yang memberikan harga rata-rata keamanan selama periode waktu tersebut. Rata-rata bergerak sederhana menghaluskan volatilitas, dan membuatnya lebih mudah untuk melihat tren harga suatu keamanan. Jika nilai rata-rata bergerak sederhana naik, ini berarti harga keamanan semakin meningkat. Jika mengarah ke bawah berarti harga keamanan menurun. Semakin panjang jangka waktu untuk moving average, semakin halus moving average yang sederhana. Rata-rata pergerakan jangka pendek lebih mudah berubah, namun bacaannya lebih mendekati data sumber. Signifikansi Analitis Moving averages adalah alat analisis penting yang digunakan untuk mengidentifikasi tren harga saat ini dan potensi perubahan dalam tren yang telah mapan. Bentuk paling sederhana menggunakan rata-rata bergerak sederhana dalam analisis adalah menggunakannya untuk mengidentifikasi dengan cepat apakah keamanan dalam tren naik atau tren turun. Alat analisis lain yang populer, walaupun sedikit lebih kompleks, adalah membandingkan rata-rata bergerak sederhana dengan masing-masing yang mencakup rentang waktu yang berbeda. Jika rata-rata bergerak sederhana jangka pendek berada di atas rata-rata jangka panjang, uptrend diharapkan terjadi. Di sisi lain, rata-rata jangka panjang di atas rata-rata jangka pendek menandakan pergerakan turun dalam tren. Pola Perdagangan Populer Dua pola perdagangan populer yang menggunakan moving average sederhana mencakup salib kematian dan salib emas. Salib kematian terjadi saat rata-rata pergerakan sederhana 50 hari di bawah rata-rata pergerakan 200 hari. Ini dianggap sebagai sinyal bearish, sehingga kerugian lebih lanjut di simpan. Salib emas terjadi ketika rata-rata pergerakan jangka pendek di atas rata-rata bergerak jangka panjang. Diperkuat oleh volume perdagangan yang tinggi, hal ini dapat memberi sinyal keuntungan lebih lanjut di toko. Rata-rata - MA BREAKING DOWN Moving Average - MA Sebagai contoh SMA, pertimbangkan keamanan dengan harga penutupan berikut selama 15 hari: Minggu 1 (5 hari) 20, 22, 24, 25, 23 Minggu 2 (5 hari) 26, 28, 26, 29, 27 Minggu 3 (5 hari) 28, 30, 27, 29, 28 MA 10 hari akan rata-rata harga penutupan untuk 10 hari pertama sebagai titik data pertama. Titik data berikutnya akan menurunkan harga paling awal, tambahkan harga pada hari ke 11 dan ambil rata-rata, dan seterusnya seperti yang ditunjukkan di bawah ini. Seperti disebutkan sebelumnya, MAs lag tindakan harga saat ini karena mereka didasarkan pada harga masa lalu semakin lama periode MA, semakin besar lag. Jadi MA 200 hari akan memiliki tingkat lag yang jauh lebih besar daripada MA 20 hari karena mengandung harga selama 200 hari terakhir. Durasi MA yang digunakan bergantung pada tujuan perdagangan, dengan MA yang lebih pendek digunakan untuk perdagangan jangka pendek dan MA jangka panjang lebih sesuai untuk investor jangka panjang. MA 200 hari banyak diikuti oleh investor dan pedagang, dengan tembusan di atas dan di bawah rata-rata pergerakan ini dianggap sebagai sinyal perdagangan penting. MA juga memberi sinyal perdagangan penting sendiri, atau ketika dua rata-rata melintas. MA yang sedang naik menunjukkan bahwa keamanan dalam tren naik. Sementara MA yang menurun menunjukkan bahwa tren turun. Begitu pula, momentum ke atas dikonfirmasi dengan crossover bullish. Yang terjadi ketika MA jangka pendek melintasi MA jangka panjang. Momentum turun dikonfirmasi dengan crossover bearish, yang terjadi saat MA jangka pendek melintasi di bawah Moving Average MA. Kaufman039s Adaptive Moving Average (KAMA) Kaufman039s Adaptive Moving Average (KAMA) Pendahuluan Dikembangkan oleh Perry Kaufman, Kaufman039 Adaptive Moving Average ( KAMA) adalah rata-rata bergerak yang dirancang untuk memperhitungkan kebisingan pasar atau volatilitas. KAMA akan mengikuti harga saat harga ayunan relatif kecil dan suaranya rendah. KAMA akan menyesuaikan saat harga ayunan melebar dan mengikuti harga dari jarak yang lebih jauh. Indikator berikut ini dapat digunakan untuk mengidentifikasi tren keseluruhan, titik balik waktu dan pergerakan harga filter. Perhitungan Ada beberapa langkah yang diperlukan untuk menghitung Kaufman039 Adaptive Moving Average. Pertama mulailah dengan setting yang direkomendasikan oleh Perry Kaufman, yaitu KAMA (10.2,30). 10 adalah jumlah periode untuk Efisiensi Rasio (ER). 2 adalah jumlah periode untuk konstanta EMA tercepat. 30 adalah jumlah periode untuk konstanta EMA paling lambat. Sebelum menghitung KAMA, kita perlu menghitung Efficiency Ratio (ER) dan Smoothing Constant (SC). Memecah formula menjadi ukuran kecil nugget membuat lebih mudah untuk memahami metodologi di belakang indikator. Perhatikan bahwa ABS adalah singkatan dari Absolute Value. Efficiency Ratio (ER) ER pada dasarnya adalah perubahan harga yang disesuaikan dengan volatilitas harian. Secara statistik, Rasio Efisiensi memberi tahu kita efisiensi fraktal perubahan harga. ER berfluktuasi antara 1 dan 0, namun ekstrem ini adalah pengecualian, bukan norma. ER akan menjadi 1 jika harga bergerak naik 10 periode berturut-turut atau turun 10 periode berturut-turut. ER akan menjadi nol jika harga tidak berubah selama 10 periode. Smoothing Constant (SC) Konstanta pemulusan menggunakan ER dan dua konstanta pemulusan berdasarkan rata-rata pergerakan eksponensial. Seperti yang mungkin Anda perhatikan, Konstanta Smoothing menggunakan konstanta pemulusan untuk rata-rata bergerak eksponensial dalam formula. (2301) adalah konstanta pemulusan untuk EMA 30 periode. SC Tercepat adalah konstanta pemulusan untuk EMA lebih pendek (2 periode). SC yang paling lambat adalah konstanta pemulusan untuk EMA paling lambat (30 periode). Perhatikan bahwa 2 di akhir adalah untuk mensejajarkan persamaan. Dengan Efficiency Ratio (ER) dan Smoothing Constant (SC), kita sekarang siap untuk menghitung Kaufman039 Adaptive Moving Average (KAMA). Karena kita membutuhkan nilai awal untuk memulai perhitungan, KAMA pertama hanyalah sebuah moving average yang sederhana. Perhitungan berikut didasarkan pada rumus di bawah ini. Contoh PerhitunganChart Gambar di bawah ini menunjukkan tangkapan layar dari spreadsheet Excel yang digunakan untuk menghitung KAMA dan grafik QQQ yang sesuai. Penggunaan dan Sinyal Chartis dapat menggunakan KAMA seperti indikator berikut lainnya, seperti moving average. Chartis dapat mencari harga persilangan, perubahan terarah dan sinyal yang disaring. Pertama, sebuah salib di atas atau di bawah KAMA menunjukkan perubahan arah harga. Seperti halnya rata-rata bergerak, sistem crossover sederhana akan menghasilkan banyak sinyal dan banyak whipsaws. Chartists dapat mengurangi whipsaws dengan menerapkan filter harga atau waktu ke crossover. Seseorang mungkin memerlukan harga untuk memegang salib selama beberapa hari atau membutuhkan salib melebihi KAMA dengan persentase yang ditetapkan. Kedua, chartists dapat menggunakan arah KAMA untuk menentukan keseluruhan kecenderungan keamanan. Ini mungkin memerlukan penyesuaian parameter untuk memperlancar indikator lebih lanjut. Chartists dapat mengubah parameter tengah, yang merupakan konstanta EMA tercepat, untuk menghaluskan KAMA dan mencari perubahan arah. Tren turun selama KAMA jatuh dan menambat posisi terendah. Trennya naik selama KAMA naik dan menempa harga tertinggi. Contoh Kroger di bawah ini menunjukkan KAMA (10,5,30) dengan tren naik yang curam dari bulan Desember sampai Maret dan tren kenaikan yang kurang tajam dari bulan Mei sampai Agustus. Dan akhirnya, chartists bisa menggabungkan sinyal dan teknik. Chartists dapat menggunakan KAMA jangka panjang untuk menentukan tren yang lebih besar dan KAMA jangka pendek untuk sinyal perdagangan. Misalnya, KAMA (10,5,30) bisa dijadikan trend filter dan dianggap bullish saat naik. Setelah bullish, chartists kemudian bisa mencari bullish cross saat harga bergerak diatas KAMA (10.2,30). Contoh di bawah ini menunjukkan MMM dengan kenaikan KAMA jangka panjang dan persilangan bullish pada bulan Desember, Januari dan Februari. KAMA jangka panjang turun pada bulan April dan terjadi persilangan bearish pada bulan Mei, Juni dan Juli. SharpCharts KAMA dapat ditemukan sebagai indikator overlay di meja kerja SharpCharts. Pengaturan default akan secara otomatis muncul di kotak parameter setelah dipilih dan para chartis dapat mengubah parameter ini agar sesuai dengan kebutuhan analitis mereka. Parameter pertama adalah untuk Rasio Efisiensi dan chartists harus menahan diri untuk tidak meningkatkan jumlah ini. Sebagai gantinya, chartists dapat menurunkannya untuk meningkatkan sensitivitas. Chartis yang ingin memperlancar KAMA untuk analisis tren jangka panjang dapat meningkatkan parameter tengah secara bertahap. Meskipun perbedaannya hanya 3, KAMA (10,5,30) secara signifikan lebih mulus dari KAMA (10,2,30). Studi lebih lanjut Dari pencipta, buku di bawah ini menawarkan informasi terperinci mengenai indikator, program, algoritma, dan sistem, termasuk rincian tentang KAMA dan sistem rata-rata bergerak lainnya. Sistem dan Metode Trading Perry Kaufman
No comments:
Post a Comment